Diabetes mellitus (DM) poses a major global healthcare challenge, highlighting the need for new treatments beyond current options. Currently available drugs have side effects including weight gain, nausea, vomiting, diarrhea, insulin resistance etc. Therefore, given the benefits of indole derivatives in diabetes and the lack of computational studies on bis-indole-based triazine derivatives with aldose reductase (AR), this study employs in-silico analysis to explore their potential as type-2 diabetes treatments. Based on the Differential Expression analysis, the human aldose reductase (HAR) encoding gene AKR1B1 showed overexpression in GSE30122 diabetes patients (Log2FCâ=â0.62, Pâ<â0.01). Moreover, the compounds 2-((5,6-di(1H-indol-3-yl)-1,2,4-triazin-3-yl)thio)-1-(3-hydroxy-5-methylphenyl)ethan-1-one (4) and 2-((5,6-di(1H-indol-3-yl)-1,2,4-triazin-3-yl)thio)-1-(4-nitrophenyl)ethan-1-one (8) were identified as leading candidates, showing binding energies of -Â 62.12, -Â 81.73Â kcal/mol and -Â 57.19, -Â 85.97Â kcal/mol, respectively. Docking, MM/GBSA screening, molecular dynamics (MD) simulations, PCA, and post-MM/GBSA analysis confirmed their stability and favorable binding compared to the apo protein and control. Further in-vitro, in-vivo, and clinical studies are required to validate their therapeutic potential.
Exploration of leads from bis-indole based triazine derivatives targeting human aldose reductase in diabetic type 2: in-silico approaches.
阅读:3
作者:Roney Miah, Issahaku Abdul Rashid, Uddin Md Nazim, Wilhelm Anke, Aluwi Mohd Fadhlizil Fasihi Mohd
| 期刊: | 3 Biotech | 影响因子: | 2.900 |
| 时间: | 2025 | 起止号: | 2025 Jan;15(1):5 |
| doi: | 10.1007/s13205-024-04178-1 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
