NMR spectroscopy is a powerful analytical tool for both qualitative and quantitative analysis. However, accurate quantitative analysis in complex fluids such as human blood plasma is challenging, and analysis using one-dimensional NMR is limited by signal overlap. It is impractical to use heteronuclear experiments involving natural abundance (13)C on a routine basis due to low sensitivity, despite their improved resolution. Focusing on circumventing such bottlenecks, this study demonstrates the utility of a combination of isotope enhanced NMR experiments to analyze metabolites in human blood plasma. (1)H-(15)N HSQC and (1)H-(13)C HSQC experiments on the isotope tagged samples combined with the conventional (1)H one-dimensional and (1)H-(1)H TOCSY experiments provide quantitative information on a large number of metabolites in plasma. The methods were first tested on a mixture of 28 synthetic analogues of metabolites commonly present in human blood; 27 metabolites in a standard NIST (National Institute of Standards and Technology) human blood plasma were then identified and quantified with an average coefficient of variation of 2.4% for 17 metabolites and 5.6% when all the metabolites were considered. Carboxylic acids and amines represent a majority of the metabolites in body fluids, and their analysis by isotope tagging enables a significant enhancement of the metabolic pool for biomarker discovery applications. Improved sensitivity and resolution of NMR experiments imparted by (15)N and (13)C isotope tagging are attractive for both the enhancement of the detectable metabolic pool and accurate analysis of plasma metabolites. The approach can be easily extended to many additional metabolites in almost any biological mixture.
Quantitative analysis of blood plasma metabolites using isotope enhanced NMR methods.
阅读:6
作者:Gowda G A Nagana, Tayyari Fariba, Ye Tao, Suryani Yuliana, Wei Siwei, Shanaiah Narasimhamurthy, Raftery Daniel
| 期刊: | Analytical Chemistry | 影响因子: | 6.700 |
| 时间: | 2010 | 起止号: | 2010 Nov 1; 82(21):8983-90 |
| doi: | 10.1021/ac101938w | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
