A combination of strong load-bearing capacity and high swelling degree is desired in hydrogels for many applications including drug delivery, tissue engineering, and biomedical engineering. However, a compromising relationship exists between these two most important characteristics of hydrogels. Improving both of these important properties simultaneously in a single hydrogel material is still beyond the satisfactory limit. Herein, we report a novel approach to address this problem by introducing a silica-based bi-functional 3D crosslinker. Our bi-functional silica nanoparticles (BF-Si NPs) possess amine groups that are able to offer pseudo-crosslinking effects induced by inter-cohesive bonding, and acrylate groups that can form conventional covalent crosslinking in the same hydrogel. We fabricated polyacrylic acid (PAc-Si) and polyacrylamide (PAm-Si) hydrogels using our BF-Si NPs via free radical polymerization to demonstrate this concept. Incorporation of the BF-Si crosslinkers into the hydrogels has resulted in a large enhancement in the mechanical properties compared to conventional hydrogel crosslinked with N,N'-methylene bisacrylamide (MBA). For instance, tensile strength and the toughness increased by more than 6 times and 10 times, respectively, upon replacing MBA with BF-Si in polyacrylamide hydrogel. Moreover, the hydrogels crosslinked with BF-Si exhibited a remarkably elevated level of swelling capacity in the aqueous medium. Our facile yet smart strategy of employing the 3D bi-functional crosslinker for combining high swelling degree and strong mechanical properties in the same hydrogels can be extended to the fabrication of many similar acrylate or vinyl polymer hydrogels.
Bi-functional silica nanoparticles for simultaneous enhancement of mechanical strength and swelling capacity of hydrogels.
阅读:7
作者:Sujan Majharul Islam, Sarkar Stephen Don, Sultana Salma, Bushra Labiba, Tareq Rizwan, Roy Chanchal Kumar, Azam Md Shafiul
| 期刊: | RSC Advances | 影响因子: | 4.600 |
| 时间: | 2020 | 起止号: | 2020 Feb 10; 10(11):6213-6222 |
| doi: | 10.1039/c9ra09528d | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
