Multispectral transmission imaging has emerged as a promising technique for imaging breast tissue with high resolution. However, the method encounters challenges such as low grayscale, noisy transmission images with weak signals, primarily due to the strong absorption and scattering of light in breast tissue. A common approach to improve the signal-to-noise ratio (SNR) and overall image quality is frame accumulation. However, factors such as camera jitter and respiratory motion during image acquisition can cause frame misalignment, degrading the quality of the accumulated image. To address these issues, this study proposes a novel image registration method. A hybrid approach combining a genetic algorithm (GA) and a constriction factor-based particle swarm optimization (CPSO), referred to as GA-CPSO, is applied for image registration before frame accumulation. The efficiency of this hybrid method is enhanced by incorporating a squared constriction factor (SCF), which speeds up the registration process and improves convergence towards optimal solutions. The GA identifies potential solutions, which are then refined by CPSO to expedite convergence. This methodology was validated on the sequence of breast frames taken at 600 nm, 620 nm, 670 nm, and 760 nm wavelength of light and proved the enhancement of accuracy by various mathematical assessments. It demonstrated high accuracy (99.93%) and reduced registration time. As a result, the GA-CPSO approach significantly improves the effectiveness of frame accumulation and enhances overall image quality. This study explored the groundwork for precise multispectral transmission image segmentation and classification.
Enhancing Multispectral Breast Imaging Quality Through Frame Accumulation and Hybrid GA-CPSO Registration.
阅读:5
作者:Mahmoud Tsabeeh Salah M, Munawar Adnan, Nawaz Muhammad Zeeshan, Chen Yuanyuan
| 期刊: | Bioengineering-Basel | 影响因子: | 3.800 |
| 时间: | 2024 | 起止号: | 2024 Dec 17; 11(12):1281 |
| doi: | 10.3390/bioengineering11121281 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
