In vitro cellular uptake and dimerization of signal transducer and activator of transcription-3 (STAT3) identify the photosensitizing and imaging-potential of isomeric photosensitizers derived from chlorophyll-a and bacteriochlorophyll-a.

阅读:3
作者:Srivatsan Avinash, Wang Yanfang, Joshi Penny, Sajjad Munawwar, Chen Yihui, Liu Chao, Thankppan Krishnakumar, Missert Joseph R, Tracy Erin, Morgan Janet, Rigual Nestor, Baumann Heinz, Pandey Ravindra K
Among the photosensitizers investigated, both ring-D and ring-B reduced chlorins containing the m-iodobenzyloxyethyl group at position-3 and a carboxylic acid functionality at position-17(2) showed the highest uptake by tumor cells and light-dependent photoreaction that correlated with maximal tumor-imaging [positron emission tomography (PET) and fluorescence] and long-term photodynamic therapy (PDT) efficacy in BALB/c mice bearing Colon26 tumors. However, among the ring-D reduced compounds, the isomer containing the 1'-m-iobenzyloxyethyl group at position-3 was more effective than the corresponding 8-(1'-m-iodobenzyloxyethyl) derivative. All photosensitizers showed maximum uptake by tumor tissue 24 h after injection, and the tumors exposed with light at low fluence and fluence rates (128 J/cm(2), 14 mW/cm(2)) produced significantly enhanced tumor eradication than those exposed at higher fluence and fluence rate (135 J/cm(2), 75 mW/cm(2)). Interestingly, dose-dependent cellular uptake of the compounds and light-dependent STAT3 dimerization have emerged as sensitive rapid indicators for PDT efficacy in vitro and in vivo and could be used as in vitro/in vivo biomarkers for evaluating and optimizing the in vivo treatment parameters of the existing and new PDT candidates.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。