In cardiac myocytes, local sarcoplasmic reticulum (SR) Ca depletion during Ca sparks is believed to play an important role in the termination of SR Ca release. We tested whether decreasing the rate of SR Ca depletion by partially inhibiting SR Ca release channels (ryanodine receptors) delays Ca spark termination. In permeabilized cat ventricular myocytes, 0.7 mM tetracaine caused almost complete Ca spark inhibition followed by a recovery significantly below control level. The recovery was associated with increased SR Ca load and increased Ca spark duration. Additionally, SR Ca release events lasting several hundred milliseconds occurred consistently. These events had a significantly lower initial Ca release flux followed by a stable plateau, indicating delayed release termination and maintained SR Ca load. Increasing SR Ca load (without inhibiting SR Ca release rate) or decreasing SR Ca release rate (without increasing SR Ca load) both induced only a small increase in spark duration. These results show that the combination of decreased release flux and increased SR Ca load has synergistic effects and exerts major changes on the termination of Ca release events. Long-lasting Ca release events may originate from highly interconnected release junctions where Ca diffusion from neighboring sites partially compensates Ca depletion, thereby delaying SR Ca-dependent termination. Eventually, these events terminate by luminal Ca-independent mechanisms, such as inactivation, adaptation, or stochastic attrition.
Partial inhibition of sarcoplasmic reticulum ca release evokes long-lasting ca release events in ventricular myocytes: role of luminal ca in termination of ca release.
阅读:4
作者:Zima Aleksey V, Picht Eckard, Bers Donald M, Blatter Lothar A
| 期刊: | Biophysical Journal | 影响因子: | 3.100 |
| 时间: | 2008 | 起止号: | 2008 Mar 1; 94(5):1867-79 |
| doi: | 10.1529/biophysj.107.114694 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
