Study of the Mechanical Properties and Microstructure of Spiral Tubes and Actuators for Controlled Extension Fabricated with Beryllium Bronze Strips.

阅读:3
作者:Lu Ruilong, Han Jingtao, Li Zhanhua, Zhang Congfa, Liu Jiawei, Liu Cheng, Lang Zhenqian, Ma Xiaoyan
QBe2.0 strips were used to fabricate spiral tubes and actuators for controlled extension (STACERs) through the winding and stabilization method, which is a novel technique for obtaining STACERs. The raw strips and the STACERs were investigated using tensile tests and SEM for the mechanical properties and fractography observation, employing specialized test equipment for service performance, and via XRD, EBSD, and TEM were used to test the residual stress and microstructure evolution. The tensile strength/elongation for raw strips was 485.8 MPa/60%, while for STACERs, tensile strength increased by 834.67 MPa to 646 MPa, and the elongation rate decreased by 12% to 19.3%. The fractography showed that the fracture mode was ductile. The service performance tests indicated that STACERs obtained under 320 °C had a higher driving force, good pointing accuracy, and high bending stiffness, while the residual stress of raw strips was τ(xy) = -6 MPa; for STACERs obtained between 290 °C and 350 °C, τ(xy) decreased from -5 MPa to -74 MPa, then increased from -74 MPa to 21 MPa, and the optimum fabricating parameter was 320 °C + 2 h. The EBSD results showed that LABs and HABs for raw strips and STACERs at 320 °C + 2 h accounted for 3-97% and 24.5-75.5%, the grain sizes were 7.07 μm and 3.67 μm, and the twin fraction decreased from 57.3% to 31.8%, respectively. The KAM and Schmid factor maps indicated that the STACER was prone to recovering and recrystallizing. Coupled with the EBSD results, the TEM results indicated that the strengthening mechanism for raw strips is twinning strengthening, while that for STACER is grain-refining strengthening with a precipitation of the γ″ phase. It is a meaningful novelty that the relationship between the macro properties and microstructure has been elucidated.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。