A Comparison of Methods for Uncovering Sample Heterogeneity: Structural Equation Model Trees and Finite Mixture Models.

阅读:5
作者:Jacobucci Ross, Grimm Kevin J, McArdle John J
Although finite mixture models have received considerable attention, particularly in the social and behavioral sciences, an alternative method for creating homogeneous groups, structural equation model trees (Brandmaier, von Oertzen, McArdle, & Lindenberger, 2013), is a recent development that has received much less application and consideration. It is our aim to compare and contrast these methods for uncovering sample heterogeneity. We illustrate the use of these methods with longitudinal reading achievement data collected as part of the Early Childhood Longitudinal Study-Kindergarten Cohort. We present the use of structural equation model trees as an alternative framework that does not assume the classes are latent and uses observed covariates to derive their structure. We consider these methods as complementary and discuss their respective strengths and limitations for creating homogeneous groups.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。