Tissue-engineering techniques have brought a great hope for bladder repair and reconstruction. The crucial requirements of a tissue-engineered bladder are bladder smooth muscle regeneration and vascularization. In this study, partial rabbit bladder (4Ã5âcm) was removed and replaced with a porcine bladder acellular matrix (BAM) that was equal in size. BAM was incorporated with platelet-derived growth factor-BB (PDGF-BB) and vascular endothelial growth factor (VEGF) in the experimental group while with no bioactive factors in the control group. The bladder tissue strip contractility in the experimental rabbits was better than that in the control ones postoperation. Histological evaluation revealed that smooth muscle regeneration and vascularization in the experimental group were significantly improved compared with those in the control group (p<0.05), while multilayered urothelium was formed in both groups. Muscle strip contractility of neobladder in the experimental group exhibited significantly better than that in the control (p<0.05) assessed with electrical field stimulation and carbachol interference. The activity of matrix metalloproteinase-2 (MMP-2) and MMP-9 in the native bladder tissue around tissue-engineered neobladder in the experimental group was significantly higher than that in the control (p<0.05). This work suggests that smooth muscle regeneration and vascularization in tissue-engineered neobladder and recovery of bladder function could be enhanced by PDGF-BB and VEGF incorporated within BAM, which promoted the upregulation of the activity of MMP-2 and MMP-9 of native bladder tissue around the tissue-engineered neobladder.
Coadministration of platelet-derived growth factor-BB and vascular endothelial growth factor with bladder acellular matrix enhances smooth muscle regeneration and vascularization for bladder augmentation in a rabbit model.
阅读:3
作者:Zhou Liuhua, Yang Bin, Sun Chao, Qiu Xuefeng, Sun Zeyu, Chen Yun, Zhang Yuanyuan, Dai Yutian
| 期刊: | Tissue Engineering. Part a | 影响因子: | 0.000 |
| 时间: | 2013 | 起止号: | 2013 Jan;19(1-2):264-76 |
| doi: | 10.1089/ten.TEA.2011.0609 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
