Laboratory tests are performed to make effective clinical decisions. However, inappropriate laboratory test ordering hampers patient care and increases financial burden for healthcare. An automated laboratory test recommendation system can provide rapid and appropriate test selection, potentially improving the workflow to help physicians spend more time treating patients. The main objective of this study was to develop a deep learning-based automated system to recommend appropriate laboratory tests. A retrospective data collection was performed at the National Health Insurance database between 1 January 2013, and 31 December 2013. We included all prescriptions that had at least one laboratory test. A total of 1,463,837 prescriptions from 530,050 unique patients was included in our study. Of these patients, 296,541 were women (55.95%), the range of age was between 1 and 107 years. The deep learning (DL) model achieved a higher area under the receiver operating characteristics curve (AUROC micro = 0.98, and AUROC macro = 0.94). The findings of this study show that the DL model can accurately and efficiently identify laboratory tests. This model can be integrated into existing workflows to reduce under- and over-utilization problems.
Deep into Laboratory: An Artificial Intelligence Approach to Recommend Laboratory Tests.
阅读:5
作者:Islam Md Mohaimenul, Poly Tahmina Nasrin, Yang Hsuan-Chia, Li Yu-Chuan Jack
| 期刊: | Diagnostics | 影响因子: | 3.300 |
| 时间: | 2021 | 起止号: | 2021 May 29; 11(6):990 |
| doi: | 10.3390/diagnostics11060990 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
