BACKGROUND: This study examines the relationship between placental amino acid (AA) transport and fetal AA demand in an ovine fetal growth restriction (FGR) model in which placental underdevelopment induces fetal hypoxemia and hypoglycemia. METHODS: Umbilical uptakes of AA, oxygen, glucose, and lactate were measured near term in eight experimental ewes (FGR group) and in eight controls (C group). RESULTS: The FGR group demonstrated significantly reduced umbilical uptakes of oxygen, glucose, lactate, and 11 AAs per kg fetus. The combined uptake of glucose, lactate, and AAs, expressed as nutrient/oxygen quotients, was reduced almost to 1.00 (FGR: 1.05 vs. C: 1.32, P ⤠0.02). In contrast to a decrease in umbilical glucose concentration, all but one of the AAs that were transported from placenta to fetus demonstrated normal or elevated fetal concentrations, and five of the essential AAs were transported against a significantly higher feto/maternal (F/M) concentration ratio. This ratio peaked at the lowest fetal oxygen levels. CONCLUSION: We conclude that, in the hypoxic FGR fetus, the reduction in AA uptake is not due to a disproportionally small placental AA transport capacity. It is the consequence of decreased fetal oxidative metabolism and growth rate, which together reduce fetal AA demand.
Umbilical uptakes and transplacental concentration ratios of amino acids in severe fetal growth restriction.
阅读:3
作者:Regnault Timothy R H, de Vrijer Barbra, Galan Henry L, Wilkening Randall B, Battaglia Frederick C, Meschia Giacomo
| 期刊: | Pediatric Research | 影响因子: | 3.100 |
| 时间: | 2013 | 起止号: | 2013 May;73(5):602-11 |
| doi: | 10.1038/pr.2013.30 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
