Our specific aims were to evaluate the power of bivariate analysis and to compare its performance with traditional univariate analysis in samples of unrelated subjects under varying sampling selection designs. Bivariate association analysis was based on the seemingly unrelated regression (SUR) model that allows different genetic models for different traits. We conducted extensive simulations for the case of two correlated quantitative phenotypes, with the quantitative trait locus making equal or unequal contributions to each phenotype. Our simulation results confirmed that the power of bivariate analysis is affected by the size, direction and source of the phenotypic correlations between traits. They also showed that the optimal sampling scheme depends on the size and direction of the induced genetic correlation. In addition, we demonstrated the efficacy of SUR-based bivariate test by applying it to a real Genome-Wide Association Study (GWAS) of Bone Mineral Density (BMD) values measured at the lumbar spine (LS) and at the femoral neck (FN) in a sample of unrelated males with low BMD (LS Z-scores ⤠-2) and with high BMD (LS and FN Z-scores >0.5). A substantial amount of top hits in bivariate analysis did not reach nominal significance in any of the two single-trait analyses. Altogether, our studies suggest that bivariate analysis is of practical significance for GWAS of correlated phenotypes.
Bivariate association analysis in selected samples: application to a GWAS of two bone mineral density phenotypes in males with high or low BMD.
阅读:4
作者:Saint-Pierre Aude, Kaufman Jean-Marc, Ostertag Agnes, Cohen-Solal Martine, Boland Anne, Toye Kaatje, Zelenika Diana, Lathrop Mark, de Vernejoul Marie-Christine, Martinez Maria
| 期刊: | European Journal of Human Genetics | 影响因子: | 4.600 |
| 时间: | 2011 | 起止号: | 2011 Jun;19(6):710-6 |
| doi: | 10.1038/ejhg.2011.22 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
