Pechini derived multifunctional MgO based chromate nanocomposites for superior brilliant green dye adsorption.

阅读:3
作者:Basha Maram T, Abou-Krisha Mortaga M, Saad Fawaz A, Shah Reem K, Abdelrahman Ehab A
The environmental threat posed by brilliant green dye necessitates the development of advanced materials with superior adsorption efficiency and structural tunability. In this study, two novel multifunctional nanocomposites, MgO/CaCrO(4)/CaCO(3)/CaO/C (MC600) and MgO/Ca(5)(CrO(4))(3)O(0.5)/C (MC800), were successfully fabricated using a tailored Pechini sol-gel method. This work introduces a temperature-controlled phase-engineering approach that induces distinct structural evolution, from multiphase composites at 600 °C to highly crystalline, thermodynamically stable phases at 800 °C. The average crystallite sizes, estimated from X-ray diffraction (XRD) patterns, were found to be 60.68 nm for MC600 and 65.88 nm for MC800. Field emission scanning electron microscope (FE-SEM) showed that MC600 had agglomerated particles with rough textures, whereas MC800 displayed more defined spherical particles with improved homogeneity. The results were consistent with those obtained from high-resolution transmission electron microscope (HR-TEM) imaging, showing irregular, highly agglomerated shapes in MC600 and well-defined, mostly spherical to quasi-hexagonal particles in MC800, reflecting enhanced crystallinity and reduced aggregation. Adsorption studies demonstrated excellent performance in brilliant green removal, with maximum capacities of 246.91 mg/g for MC600 and 229.89 mg/g for MC800, outperforming some conventional adsorbents. The adsorption mechanism was spontaneous, physical, and exothermic, following the Langmuir-based adsorption model and first-order kinetic model kinetics. Moreover, the MC600 nanocomposite exhibited good reusability, maintaining over 85% removal efficiency after five consecutive adsorption-desorption cycles.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。