Detection of outliers in high-dimensional data using nu-support vector regression.

阅读:4
作者:Mohammed Rashid Abdullah, Midi Habshah, Dhhan Waleed, Arasan Jayanthi
Support Vector Regression (SVR) is gaining in popularity in the detection of outliers and classification problems in high-dimensional data (HDD) as this technique does not require the data to be of full rank. In real application, most of the data are of high dimensional. Classification of high-dimensional data is needed in applied sciences, in particular, as it is important to discriminate cancerous cells from non-cancerous cells. It is also imperative that outliers are identified before constructing a model on the relationship between the dependent and independent variables to avoid misleading interpretations about the fitting of a model. The standard SVR and the μ-ε-SVR are able to detect outliers; however, they are computationally expensive. The fixed parameters support vector regression (FP-ε-SVR) was put forward to remedy this issue. However, the FP-ε-SVR using ε-SVR is not very successful in identifying outliers. In this article, we propose an alternative method to detect outliers i.e. by employing nu-SVR. The merit of our proposed method is confirmed by three real examples and the Monte Carlo simulation. The results show that our proposed nu-SVR method is very successful in identifying outliers under a variety of situations, and with less computational running time.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。