In a common pharmacogenomic scenario, outcome measures are compared for treated and untreated subjects across genotype-defined subgroups. The key question is whether treatment benefit (or harm) is particularly strong in certain subgroups, and therefore the statistical analysis focuses on the interaction between treatment and genotype. However, genome-wide analysis in such scenarios requires careful statistical thought as, in addition to the usual problems of multiple testing, the marker-defined sample sizes, and therefore power, vary across the individual genotypes being evaluated. The variability in power means that the usual practice of using a common P-value threshold across tests has difficulties. The reason is that the use of a fixed threshold, with variable power, implies that the costs of type I and type II errors vary across tests in a manner that is implicit rather than dictated by the analyst. In this paper we discuss this problem and describe an easily implementable solution based on Bayes factors. We pay particular attention to the specification of priors, which is not a straightforward task. The methods are illustrated using data from a randomized controlled clinical trial in which homocysteine levels are compared in individuals receiving low and high doses of folate supplements and across marker subgroups. The method we describe is implemented in the R computing environment with code available from http://faculty.washington.edu/jonno/cv.html.
Detecting signals in pharmacogenomic genome-wide association studies.
阅读:4
作者:Wakefield J, Skrivankova V, Hsu F-C, Sale M, Heagerty P
| 期刊: | Pharmacogenomics Journal | 影响因子: | 2.900 |
| 时间: | 2014 | 起止号: | 2014 Aug;14(4):309-15 |
| doi: | 10.1038/tpj.2013.44 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
