Bacterial RNA polymerases (RNAP) utilize 6S RNAs as templates to synthesize ultrashort transcripts (up toâ~14 nt), termed product RNAs (pRNAs), that play a key role in reversing the blockage of RNAP by 6S RNA. Here, we resolved the pRNA length profile of 6S-1 RNA from B. subtilis, a major model system for the study of 6S RNA biology, during outgrowth of cells from extended stationary phase. 9-mers were found to be a particularly abundant pRNA length species, followed by 8-/10-/11-mers and 13-/14-mers. Consistent with in vitro data from the Escherichia coli system, these findings support the mechanistic model according to which the housekeeping sigma factor (Ï(70) or Ï(A)) dissociates from 6S RNA:RNAP complexes upon synthesis of pRNA 9-mers, followed by final dissociation of 6S RNA and RNAP upon synthesis of longer pRNAs (13-/14-mers). Methodologically, the identification of such ultrashort RNAs in total cellular extracts by RNA-Seq is inefficient with standard protocols using adapter ligation to RNA 3'-ends for reverse transcription and PCR-based cDNA sequencing. Here, we demonstrate that ultrashort RNAs can instead be incorporated into RNA-Seq libraries by polyA-, polyC- and potentially also polyU-tailing of their 3'-ends. At positions where a non-tailing nucleotide is followed by one or more tailing nucleotides, an algorithm that integrates RNA-Seq results from at least two different 3'-end tailings allows one to approximate the fraction of read counts at such ambiguous positions. Finally, methodological biases and potential applications of our approach to other short RNAs are discussed.
6S-1 pRNA 9-mers are a prominent length species during outgrowth of Bacillus subtilis cells from extended stationary phase.
阅读:15
作者:Damm Katrin, Klemm Paul, Lechner Marcus, Helmecke Dominik, Hartmann Roland K
| 期刊: | RNA Biology | 影响因子: | 3.400 |
| 时间: | 2025 | 起止号: | 2025 Dec;22(1):1-14 |
| doi: | 10.1080/15476286.2025.2484519 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
