Nondestructive Mechanical and Electrical Characterization of Piezoelectric Zinc Oxide Nanowires for Energy Harvesting.

阅读:5
作者:Anang Frank Eric Boye, Cain Markys, Xu Min, Li Zhi, Brand Uwe, Jangid Darshit, Seibert Sebastian, Schwalb Chris, Peiner Erwin
In this study we report on the structural, mechanical, and electrical characterization of different structures of vertically aligned zinc oxide (ZnO) nanowires (NWs) synthesized using hydrothermal methods. By optimizing the growth conditions, scanning electron microscopy (SEM) micrographs show that the ZnO NWs could reach an astounding 51.9 ± 0.82 µm in length, 0.7 ± 0.08 µm in diameter, and 3.3 ± 2.1 µm(-2) density of the number of NWs per area within 24 h of growth time, compared with a reported value of ~26.8 µm in length for the same period. The indentation modulus of the as-grown ZnO NWs was determined using contact resonance (CR) measurements using atomic force microscopy (AFM). An indentation modulus of 122.2 ± 2.3 GPa for the NW array sample with an average diameter of ~690 nm was found to be close to the reference bulk ZnO value of 125 GPa. Furthermore, the measurement of the piezoelectric coefficient (d(33)) using the traceable ESPY33 tool under cyclic compressive stress gave a value of 1.6 ± 0.4 pC/N at 0.02 N with ZnO NWs of 100 ± 10 nm and 2.69 ± 0.05 µm in diameter and length, respectively, which were embedded in an S1818 polymer. Current-voltage (I-V) measurements of the ZnO NWs fabricated on an n-type silicon (Si) substrate utilizing a micromanipulator integrated with a tungsten (W) probe exhibits Ohmic behavior, revealing an important phenomenon which can be attributed to the generated electric field by the tungsten probe, dielectric residue, or conductive material.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。