The involvements of intracellular basal calcium and membrane potential in para-phenylenediamine-impaired sperm function.

阅读:3
作者:Chen Yannan, Yang Tingting, Gu Xiaoling, Chen Yuqi, Wang Qingxin, Wang Xia
BACKGROUND: Para-phenylenediamine (PPD) is a crystalline solid that belongs to the aromatic amine group, widely used in the manufacturing of various dyes. PPD exhibits toxic effects on female hormone stability, ovarian function, and embryo development. Although studies have shown that PPD exposure can damage oocyte quality in female mice, research on its effects on male reproductive capability, particularly on human sperm quality and function, is limited. The purpose of this study was to investigate the effect of PPD on male semen and explore its mechanism. METHODS: Computer-assisted sperm analysis system and eosin-aniline black method were conducted to detect sperm motility and viability; sperm function was analyzed by tyrosine phosphorylation immunofluorescence staining, sperm mucus penetration capacity assay, and sperm acrosome reaction incidence; reactive oxygen species (ROS) and DNA damage were analyzed by specific kits; the transient calcium, intracellular basal calcium, and membrane potential were detected by multi-functional microplate reader after Fluo-4, Fura-10 AM and DiSC3(5) staining. RESULTS: PPD was shown to have a dose-dependent impact on both the motility and viability of human sperm. Furthermore, the ability of sperm to capacitate, penetrate viscous substances, and undergo acrosome reaction exhibited significant impairments in various aspects of sperm function. The impact of PPD on sperm is comparable to its effects on other bodily systems. Spermatozoon toxicity caused by PPD was found to be associated with increased levels of ROS and DNA damage, which indicated that oxidative stress plays a role in this process. Although the transient calcium response to PPD and progesterone was not disturbed, intracellular basal calcium was increased and membrane potential was depolarized after exposure of human sperm to PPD. CONCLUSIONS: In summary, our findings suggest that increased intracellular basal calcium, hyperpolarization in the membrane potential of damaged sperm, and oxidative stress might be the underlying reasons for the decline in semen quality and dysfunction of sperm following PPD exposure.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。