Towards a better solution to the shortest common supersequence problem: the deposition and reduction algorithm.

阅读:4
作者:Ning Kang, Leong Hon Wai
BACKGROUND: The problem of finding a Shortest Common Supersequence (SCS) of a set of sequences is an important problem with applications in many areas. It is a key problem in biological sequences analysis. The SCS problem is well-known to be NP-complete. Many heuristic algorithms have been proposed. Some heuristics work well on a few long sequences (as in sequence comparison applications); others work well on many short sequences (as in oligo-array synthesis). Unfortunately, most do not work well on large SCS instances where there are many, long sequences. RESULTS: In this paper, we present a Deposition and Reduction (DR) algorithm for solving large SCS instances of biological sequences. There are two processes in our DR algorithm: deposition process, and reduction process. The deposition process is responsible for generating a small set of common supersequences; and the reduction process shortens these common supersequences by removing some characters while preserving the common supersequence property. Our evaluation on simulated data and real DNA and protein sequences show that our algorithm consistently produces the best results compared to many well-known heuristic algorithms, and especially on large instances. CONCLUSION: Our DR algorithm provides a partial answer to the open problem of designing efficient heuristic algorithm for SCS problem on many long sequences. Our algorithm has a bounded approximation ratio. The algorithm is efficient, both in running time and space complexity and our evaluation shows that it is practical even for SCS problems on many long sequences.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。