Major latitudinal clines have been observed in Drosophila melanogaster, a human commensal that originated in tropical Africa and has subsequently dispersed globally to colonize temperate habitats. However, despite the crucial role pathogens play in species distribution, our understanding of how geographical factors influence disease susceptibility remains limited. This investigation explored the effects of latitudinal clines and biomes on disease resistance using the common fly pathogen Metarhizium anisopliae and 43 global Drosophila melanogaster populations. The findings revealed correlations between disease resistance and latitudinal gradients of sleep duration, temperature, and humidity. Although enhanced defenses may be driven by fungal diversity at tropical latitudes, the most disease-resistant tropical males also showed the highest susceptibility to desiccation. This suggests potential trade-offs between abiotic stress resistance, necessary for survival in temperate habitats, and disease resistance. Furthermore, the study uncovered interactions between sex, mating status, sleep, and abiotic stresses, affecting disease resistance. Notably, longer-sleeping males and virgin flies survived infections longer, with additional daytime sleep post-infection being protective, particularly in the most resistant fly lines. These observations support the hypothesis that sleep and disease defense are intertwined traits linked to organismal fitness and subject to joint clinal evolution.
Latitudinal Clines in Climate and Sleep Patterns Shape Disease Outcomes in Drosophila melanogaster Infected by Metarhizium anisopliae.
阅读:12
作者:Nan Mintong, Wang Jonathan B, Siokis Michail, St Leger Raymond J
| 期刊: | Ecology and Evolution | 影响因子: | 2.300 |
| 时间: | 2025 | 起止号: | 2025 Feb 28; 15(3):e71047 |
| doi: | 10.1002/ece3.71047 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
