The inherent chemical functionalities of biobased monomers enable the production of renewably sourced polymers that further advance sustainable manufacturing. Itaconic acid (IA) is a nontoxic, commercially produced biobased monomer that can undergo both UV and thermal curing. Betulin is a biocompatible, structurally complex diol derived from birch tree bark that has been recently studied for materials with diverse applications. Here, betulin, IA, and biobased linear diacids, 1,12-dodecanedioic acid (C12) and 1,18-octadecanedioic acid (C18), were used to prepare thermosets using sequential and bulk curing methods. Thermoplastic polyester precursors were synthesized and formulated into polyester-methacrylate (PM) resins to produce sequential UV-curable thermosets. Bulk-cured polyester thermosets were prepared using a one-pot, solventless melt polycondensation using glycerol as a cross-linker. The structure-property relationships of the thermoplastic polyester precursors, sequentially prepared PM thermosets, and bulk-cured polyester thermosets were evaluated with varying IA content. Both types of thermosets exhibited higher storage moduli, T(g)s, and thermal stabilities with greater IA comonomer content. These results demonstrate the viability of using IA as a comonomer to produce betulin-based thermosets each with tunable properties, expanding the scope of their applications and use in polymeric materials.
Itaconic Acid as a Comonomer in Betulin-Based Thermosets via Sequential and Bulk Preparation.
阅读:3
作者:Lehman-Chong Alexandra M, Cox Casey L, Kinaci Emre, Burkert Sarah E, Dodge Megan L, Rosmarin Devin M, Newell James A, Soh Lindsay, Gordon Melissa B, Stanzione Joseph F 3rd
| 期刊: | ACS Sustainable Chemistry & Engineering | 影响因子: | 7.300 |
| 时间: | 2023 | 起止号: | 2023 Sep 13; 11(38):14216-14225 |
| doi: | 10.1021/acssuschemeng.3c04178 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
