To formulate novel chitosan (CS)-coated-PLGA-nanoparticles (NPs) using a central composite design approach and use them in order to improve brain bioavailability for catechin hydrate (CH) through direct nose-to-central nervous system (CNS) delivery for the evaluation of a comparative biodistribution study of CH by the newly developed ultra high performance liquid chromatography mass spectroscopy and mass spectroscopy (UHPLC-MS/MS) method in the treatment of epilepsy. For PLGA-NPs' preparation, a double emulsion-solvent evaporation method was used, where a four-factor, three-level central composite design was used to obtain the best nanoformulation. For the optimization, four independent variables were chosen, that is, PLGA, polyvinyl alcohol (PVA), sonication time, and temperature. The optimized PLGA-NPs were further coated with chitosan and assessed for drug release, nasal permeation study, as well as a comparative pharmacokinetic and pharmacodynamic study. Independent and dependent variables helped to optimize the best nanoformulation based on the composition of PLGA (50.0 mg), PVA (1.10%), sonication time (90.0 s), and temperature (25.0 °C). The values of dependent variables were observed, such as polydispersity index (PDI), particle size, and zeta potential (ZP)-that is, 0.106 ± 0.01, 93.46 ± 3.94 nm, and -12.63 ± 0.08 mV, respectively. The ZPs of CS-coated PLGA-NPs were changed from negative to positive value with some alteration in the distribution of particle size. Excellent mucoadhesive-nature of CS-CH-PLGA-NPs as compared with CH-S and CH-PLGA-NPs was seen, with a retention time of 0.856 min and m/z of 289.23/245.20 for CH, together with a retention time of 1.04 min and m/z of 301.21/151.21 for Quercetin as an internal standard (IS). For a linear range (1-1000 ng mL(-1)), % accuracy (93.07-99.41%) and inter- and intraday % precision (0.39-4.90%) were determined. The improved C(max) with area under curve (AUC)(0-24) was found to be highly significant (p < 0.001) in Wistar rats' brain as compared with the i.n. and i.v. treated group based on the pharmacokinetics (PK) results. Furthermore, CS-CH-PLGA-NPs were found to be more significant (p < 0.001) for the treatment of seizure threshold rodent models, that is, increasing current electroshock and pentylenetetrazole-induced seizures. A significant role of CS-CH-PLGA-NPs was observed, that is, p < 0.001, for the enhancement of brain bioavailability and the treatment of epilepsy.
RETRACTED: Quantification and Evaluations of Catechin Hydrate Polymeric Nanoparticles Used in Brain Targeting for the Treatment of Epilepsy.
阅读:3
作者:Ahmad Niyaz, Ahmad Rizwan, Alrasheed Ridha Abdullah, Almatar Hassan Mohammed Ali, Al-Ramadan Abdullah Sami, Amir Mohd, Sarafroz Md
| 期刊: | Pharmaceutics | 影响因子: | 5.500 |
| 时间: | 2020 | 起止号: | 2020 Feb 27; 12(3):203 |
| doi: | 10.3390/pharmaceutics12030203 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
