The goal of blind image super-resolution (BISR) is to recover the corresponding high-resolution image from a given low-resolution image with unknown degradation. Prior related research has primarily focused effectively on utilizing the kernel as prior knowledge to recover the high-frequency components of image. However, they overlooked the function of structural prior information within the same image, which resulted in unsatisfactory recovery performance for textures with strong self-similarity. To address this issue, we propose a two stage blind super-resolution network that is based on kernel estimation strategy and is capable of integrating structural texture as prior knowledge. In the first stage, we utilize a dynamic kernel estimator to achieve degradation presentation embedding. Then, we propose a triple path attention groups consists of triple path attention blocks and a global feature fusion block to extract structural prior information to assist the recovery of details within images. The quantitative and qualitative results on standard benchmarks with various degradation settings, including Gaussian8 and DIV2KRK, validate that our proposed method outperforms the state-of-the-art methods in terms of fidelity and recovery of clear details. The relevant code is made available on this link as open source.
A blind image super-resolution network guided by kernel estimation and structural prior knowledge.
阅读:5
作者:Zhang Jiajun, Zhou Yuanbo, Bi Jiang, Xue Yuyang, Deng Wei, He Wenlin, Zhao Tao, Sun Kai, Tong Tong, Gao Qinquan, Zhang Qing
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2024 | 起止号: | 2024 Apr 25; 14(1):9525 |
| doi: | 10.1038/s41598-024-60157-9 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
