Amyloidogenic immunoglobulin light chain kinetic stabilizers comprising a simple urea linker module reveal a novel binding sub-site.

阅读:12
作者:Yan Nicholas L, Nair Reji, Chu Alan, Wilson Ian A, Johnson Kristen A, Morgan Gareth J, Kelly Jeffery W
In immunoglobulin light chain (LC) amyloidosis, the misfolding, or misfolding and misassembly of LC a protein or fragments thereof resulting from aberrant endoproteolysis, causes organ damage to patients. A small molecule "kinetic stabilizer" drug could slow or stop these processes and improve prognosis. We previously identified coumarin-based kinetic stabilizers of LCs that can be divided into four components, including a "linker module" and "distal substructure". Our prior studies focused on characterizing carbamate, hydantoin, and spirocyclic urea linker modules, which bind in a solvent-exposed site at the V(L)-V(L) domain interface of the LC dimer. Here, we report structure-activity relationship data on 7-diethylamino coumarin-based kinetic stabilizers. This substructure occupies the previously characterized "anchor cavity" and the "aromatic slit". The potencies of amide and urea linker modules terminating in a variety of distal substructures attached at the 3-position of this coumarin ring were assessed. Surprisingly, crystallographic data on a 7-diethylamino coumarin-based kinetic stabilizer reveals that the urea linker module and distal substructure attached at the 3-position bind a solvent-exposed region of the full-length LC dimer distinct from previously characterized sites. Our results further elaborate the small-molecule binding surface of LCs that could be occupied by potent and selective LC kinetic stabilizers.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。