BACKGROUND: The microstructural EEG elements and their functional networks relate to many neurophysiological functions of the brain and can reveal abnormalities. Despite the blooming variety of methods for estimating connectivity in the EEG of a single subject, a common pitfall is seen in relevant studies; grand averaging is used for estimating the characteristic connectivity patterns of a group of subjects. This averaging may distort results and fail to account for the internal variability of connectivity results across the subjects of a group. NEW METHOD: In this study, we propose a novel methodology for the cross-subject network investigation of EEG graphoelements. We used dimensionality reduction techniques in order to reveal internal connectivity properties and to examine how consistent these are across a number of subjects. In addition, graph theoretical measures were utilized to prioritize regions according to their network attributes. RESULTS: As proof of concept, we applied this method on fast sleep spindles across 10 healthy subjects. Neurophysiological findings revealed subnetworks of the spindle events across subjects, highlighting a predominance for occipito-parietal areas and their connectivity with frontal regions. COMPARISON WITH EXISTING METHODS: This is a new approach for the examination of within-group connectivities in EEG research. The results accounted for more than 85% of the overall data variance and the detected subnetworks were found to be meaningful down-projections of the grand average of the group, suggesting sufficient performance for the proposed methodology. CONCLUSION: We conclude that the proposed methodology can serve as an observatory tool for the EEG connectivity patterns across subjects, providing a supplementary analysis of the existing topography techniques.
Cross-subject network investigation of the EEG microstructure: A sleep spindles study.
阅读:4
作者:Sakellariou Dimitris F, Koutroumanidis Michalis, Richardson Mark P, Kostopoulos George K
| 期刊: | Journal of Neuroscience Methods | 影响因子: | 2.300 |
| 时间: | 2019 | 起止号: | 2019 Jan 15; 312:16-26 |
| doi: | 10.1016/j.jneumeth.2018.11.001 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
