(Non)linear Interfacial Rheology of Tween, Brij and Span Stabilized Oil-Water Interfaces: Impact of the Molecular Structure of the Surfactant on the Interfacial Layer Stability.

阅读:6
作者:Risse Kerstin, Drusch Stephan
During emulsification and further processing (e.g., pasteurizing), the oil-water interface is mechanically and thermally stressed, which can lead to oil droplet aggregation and coalescence, depending on the interfacial properties. Currently, there is a lack of insights into the impact of the molecular structure (headgroup and FA chain) of low molecular weight emulsifiers (LME) on the resulting interfacial properties. Additionally, the crystallization/melting of the oil/the emulsifier is often neglected within interfacial rheological experiments. Within this study, the stability of interfaces formed by Tween, Span or Brij was determined as a function of their molecular structure, taking crystallization effects of the LME into account. The headgroup was kept constant while varying the FA, or vice versa. The interfacial film properties (viscoelasticity) were investigated at different temperatures using dilatational and interfacial shear rheology. Both the headgroup and the FA chain impacted the interfacial properties. For the same FA composition, a rather small hydrophobic headgroup resulted in a higher packed interface. The interfacial elasticity increased with increased FA chain length (C12 to C18). This seemed to be particularly the case when the emulsifier crystallized on the interface among cooling. In the case of a densely packed interface, network formation due to chain crystallization of the LME's FA chains occurs during the cooling step. The resulting interface shows predominantly elastic behavior.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。