Confidence, prediction, and tolerance in linear mixed models.

阅读:7
作者:Francq Bernard G, Lin Dan, Hoyer Walter
The literature about Prediction Interval (PI) and Tolerance Interval (TI) in linear mixed models is usually developed for specific designs, which is a main limitation to their use. This paper proposes to reformulate the two-sided PI to be generalizable under a wide variety of designs (one random factor, nested and crossed designs for multiple random factors, and balanced or unbalanced designs). This new methodology is based on the Hessian matrix, namely, the inverse of (observed) Fisher Information matrix, and is built with a cell mean model. The degrees of freedom for the total variance are calculated with the generalized Satterthwaite method and compared to the Kenward-Roger's degrees of freedom for fixed effects. Construction of two-sided TIs are also detailed with one random factor, and two nested and two crossed random variables. An extensive simulation study is carried out to compare the widths and coverage probabilities of Confidence Intervals (CI), PIs, and TIs to their nominal levels. It shows excellent coverage whatever the design and the sample size are. Finally, these CIs, PIs, and TIs are applied to two real data sets: one from orthopedic surgery study (intralesional resection risk) and the other from assay validation study during vaccine development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。