An empirical overview of nonlinearity and overfitting in machine learning using COVID-19 data.

阅读:4
作者:Peng Yaohao, Nagata Mateus Hiro
In this paper, we applied support vector regression to predict the number of COVID-19 cases for the 12 most-affected countries, testing for different structures of nonlinearity using Kernel functions and analyzing the sensitivity of the models' predictive performance to different hyperparameters settings using 3-D interpolated surfaces. In our experiment, the model that incorporates the highest degree of nonlinearity (Gaussian Kernel) had the best in-sample performance, but also yielded the worst out-of-sample predictions, a typical example of overfitting in a machine learning model. On the other hand, the linear Kernel function performed badly in-sample but generated the best out-of-sample forecasts. The findings of this paper provide an empirical assessment of fundamental concepts in data analysis and evidence the need for caution when applying machine learning models to support real-world decision making, notably with respect to the challenges arising from the COVID-19 pandemics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。