Preparation, evaluation and metabolites study in rats of novel Isoginkgetin-loaded TPGS/soluplus mixed nanomicelles.

阅读:3
作者:Feng Xue, Chen Yu-Ting, Li Lu-Ya, Sun Yu-Peng, Wang Hai-Rong, Zhang Lan-Tong
At present, cancer is one of the most lethal diseases in the world, and researchers are committed to developing effective anticancer drugs. Isoginkgetin (IGG) is a kind of biflavone with the potential to treat cancer due to the features of altering the cell cycle and inhibiting tumor cell infiltration. However, its solubility, absorbability and bioavailability are poor, so in this study, IGG was prepared into mixed nanomicelles and evaluated in vitro and in vivo. After condition optimization, IGG-loaded TPGS/soluplus mixed nanomicelles with particle size of 62.34 ± 1.10 nm, entrapment efficiency of 96.92 ± 0.66% and drug loading of 2.42 ± 0.02% were successfully prepared. The physicochemical properties of the nanomicelles were stable within 60 days, and the cytotoxicity of the nanomicelles was significantly higher than that of IGG. The metabolism results showed that 32 kinds of metabolites of IGG and 21 kinds of IGG-loaded nanomicelles were detected. The metabolites of IGG can only be detected in feces of rats, while the metabolites of IGG-loaded nanomicelles can be detected in plasma, bile, urine and feces. All these indicated that after prepared into nanomicelles, the stability, solubility, cytotoxicity and bioavailability of IGG were increased significantly, which provided a new choice for the development of new drugs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。