Large-scale whole-genome sequencing (WGS) studies have improved our understanding of the contributions of coding and noncoding rare variants to complex human traits. Leveraging association effect sizes across multiple traits in WGS rare variant association analysis can improve statistical power over single-trait analysis, and also detect pleiotropic genes and regions. Existing multi-trait methods have limited ability to perform rare variant analysis of large-scale WGS data. We propose MultiSTAAR, a statistical framework and computationally-scalable analytical pipeline for functionally-informed multi-trait rare variant analysis in large-scale WGS studies. MultiSTAAR accounts for relatedness, population structure and correlation among phenotypes by jointly analyzing multiple traits, and further empowers rare variant association analysis by incorporating multiple functional annotations. We applied MultiSTAAR to jointly analyze three lipid traits (low-density lipoprotein cholesterol, high-density lipoprotein cholesterol and triglycerides) in 61,861 multi-ethnic samples from the Trans-Omics for Precision Medicine (TOPMed) Program. We discovered new associations with lipid traits missed by single-trait analysis, including rare variants within an enhancer of NIPSNAP3A and an intergenic region on chromosome 1.
A statistical framework for powerful multi-trait rare variant analysis in large-scale whole-genome sequencing studies.
阅读:8
作者:Li Xihao, Chen Han, Selvaraj Margaret Sunitha, Van Buren Eric, Zhou Hufeng, Wang Yuxuan, Sun Ryan, McCaw Zachary R, Yu Zhi, Arnett Donna K, Bis Joshua C, Blangero John, Boerwinkle Eric, Bowden Donald W, Brody Jennifer A, Cade Brian E, Carson April P, Carlson Jenna C, Chami Nathalie, Chen Yii-Der Ida, Curran Joanne E, de Vries Paul S, Fornage Myriam, Franceschini Nora, Freedman Barry I, Gu Charles, Heard-Costa Nancy L, He Jiang, Hou Lifang, Hung Yi-Jen, Irvin Marguerite R, Kaplan Robert C, Kardia Sharon L R, Kelly Tanika, Konigsberg Iain, Kooperberg Charles, Kral Brian G, Li Changwei, Loos Ruth J F, Mahaney Michael C, Martin Lisa W, Mathias Rasika A, Minster Ryan L, Mitchell Braxton D, Montasser May E, Morrison Alanna C, Palmer Nicholette D, Peyser Patricia A, Psaty Bruce M, Raffield Laura M, Redline Susan, Reiner Alexander P, Rich Stephen S, Sitlani Colleen M, Smith Jennifer A, Taylor Kent D, Tiwari Hemant, Vasan Ramachandran S, Wang Zhe, Yanek Lisa R, Yu Bing, Rice Kenneth M, Rotter Jerome I, Peloso Gina M, Natarajan Pradeep, Li Zilin, Liu Zhonghua, Lin Xihong
| 期刊: | bioRxiv | 影响因子: | 0.000 |
| 时间: | 2023 | 起止号: | 2023 Nov 2 |
| doi: | 10.1101/2023.10.30.564764 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
