Ischemia reperfusion (IR) injury frequently results from processes that involve a transient period of interrupted blood flow. In the lung, isolated IR permits the experimental study of this specific process with continued alveolar ventilation, thereby avoiding the compounding injurious processes of hypoxia and atelectasis. In the clinical context, lung ischemia reperfusion injury (also known as lung IRI or LIRI) is caused by numerous processes, including but not limited to pulmonary embolism, resuscitated hemorrhagic trauma, and lung transplantation. There are currently limited effective treatment options for LIRI. Here, we present a reversible surgical model of lung IR involving first orotracheal intubation followed by unilateral left lung ischemia and reperfusion with preserved alveolar ventilation or gas exchange. Mice undergo a left thoracotomy, through which the left pulmonary artery is exposed, visualized, isolated, and compressed using a reversible slipknot. The surgical incision is then closed during the ischemic period, and the animal is awakened and extubated. With the mouse spontaneously breathing, reperfusion is established by releasing the slipknot around the pulmonary artery. This clinically relevant survival model permits the evaluation of lung IR injury, the resolution phase, downstream effects on lung function, as well as two-hit models involving experimental pneumonia. While technically challenging, this model can be mastered over the course of a few weeks to months with an eventual survival or success rate of 80%-90%.
A Mouse Model of Orotracheal Intubation and Ventilated Lung Ischemia Reperfusion Surgery.
阅读:4
作者:Liao Wen-I, Maruyama Daisuke, Kianian Farzaneh, Tat Christine, Tian Xiaoli, Hellman Judith, Dodd-O Jeffrey M, Prakash Arun
| 期刊: | Jove-Journal of Visualized Experiments | 影响因子: | 1.000 |
| 时间: | 2022 | 起止号: | 2022 Sep 9; (187):10 |
| doi: | 10.3791/64383 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
