Emergency fire service (EFS) systems provide rescue operations for emergencies and accidents. If properly designed, they can decrease property loss and mortality. This paper proposes a distributionally robust model (DRM) for optimizing the location of fire stations, the number of fire trucks, and demand assignment for long term planning in an EFS system. This is achieved by minimizing the worst-case expected total cost, including fire station construction cost, purchase cost for fire trucks, transportation cost, and penalty cost for not providing adequate service. The ambiguity in demands and travel durations distributions are captured through moment information and mean absolute deviation. A cutting plane method is used to solve the problem. Due to fact that it is computationally intensive for larger problems, two approximate methods are introduced; one that uses linear decision rules (LDRs), and another that adopts three-point approximations of the distributions. The results show that the heuristic method is especially useful for solving large instances of DRM. Extensive numerical experiments are conducted to analyze the model's performance with respect to different parameters. Finally, data obtained from Hefei (China) demonstrates the practical applicability and value of the model in designing an EFS system in a large metropolitan setting.
Distributionally robust optimization for fire station location under uncertainties.
阅读:5
作者:Ming Jinke, Richard Jean-Philippe P, Qin Rongshui, Zhu Jiping
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2022 | 起止号: | 2022 Mar 30; 12(1):5394 |
| doi: | 10.1038/s41598-022-08887-6 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
