Fabric-reinforced cementitious matrix (FRCM) composites, comprising high-strength fiber textiles embedded within inorganic matrices, represent an effective, cost-efficient, and low-invasive solution for strengthening and retrofitting existing masonry and reinforced concrete structures. Among different textiles employed in FRCM composites, polyparaphenylene benzo-bisoxazole (PBO) textiles are adopted due to their high tensile strength and good adhesion with the matrix. Although several experimental, numerical, and analytical works were performed to investigate the mechanical properties of PBO FRCM composites, limited information is available on their long-term behavior, as well as in the case of exposure to aggressive environments. This paper presents and discusses the results of a wide experimental campaign aimed at investigating the effect of different environmental conditions on the long-term tensile behavior of a PBO FRCM composite. Tests are performed using a clamping-grip tensile test set-up. The effect of various aggressive environments on the composite matrix cracking stress, composite tensile strength, ultimate strain, and fully cracked stage slope is investigated by comparing the results of nominally equal conditioned and unconditioned (control) specimens. These results are also compared with those of other FRCM composites comprising glass and carbon textiles subjected to the same conditionings, collected from the literature. The results show only limited reductions in the tensile properties, even after long exposure to aggressive environments.
Long-Term Behavior of PBO FRCM and Comparison with Other Inorganic-Matrix Composites.
阅读:3
作者:Calabrese Angelo Savio, D'Antino Tommaso, Colombi Pierluigi, Poggi Carlo
| 期刊: | Materials | 影响因子: | 3.200 |
| 时间: | 2022 | 起止号: | 2022 May 3; 15(9):3281 |
| doi: | 10.3390/ma15093281 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
