Robust differential expression analysis by learning discriminant boundary in multi-dimensional space of statistical attributes.

阅读:3
作者:Bei Yuanzhe, Hong Pengyu
BACKGROUND: Performing statistical tests is an important step in analyzing genome-wide datasets for detecting genomic features differentially expressed between conditions. Each type of statistical test has its own advantages in characterizing certain aspects of differences between population means and often assumes a relatively simple data distribution (e.g., Gaussian, Poisson, negative binomial, etc.), which may not be well met by the datasets of interest. Making insufficient distributional assumptions can lead to inferior results when dealing with complex differential expression patterns. RESULTS: We propose to capture differential expression information more comprehensively by integrating multiple test statistics, each of which has relatively limited capacity to summarize the observed differential expression information. This work addresses a general application scenario, in which users want to detect as many as DEFs while requiring the false discovery rate (FDR) to be lower than a cut-off. We treat each test statistic as a basic attribute, and model the detection of differentially expressed genomic features as learning a discriminant boundary in a multi-dimensional space of basic attributes. We mathematically formulated our goal as a constrained optimization problem aiming to maximize discoveries satisfying a user-defined FDR. An effective algorithm, Discriminant-Cut, has been developed to solve an instantiation of this problem. Extensive comparisons of Discriminant-Cut with 13 existing methods were carried out to demonstrate its robustness and effectiveness. CONCLUSIONS: We have developed a novel machine learning methodology for robust differential expression analysis, which can be a new avenue to significantly advance research on large-scale differential expression analysis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。