Carbon dioxide-dependent regulation of NF-κB family members RelB and p100 gives molecular insight into CO2-dependent immune regulation

NF-κB 家族成员 RelB 和 p100 的二氧化碳依赖性调节为 CO2 依赖性免疫调节提供了分子层面的见解

阅读:5
作者:Ciara E Keogh, Carsten C Scholz, Javier Rodriguez, Andrew C Selfridge, Alexander von Kriegsheim, Eoin P Cummins

Abstract

CO2 is a physiological gas normally produced in the body during aerobic respiration. Hypercapnia (elevated blood pCO2 >≈50 mm Hg) is a feature of several lung pathologies, e.g. chronic obstructive pulmonary disease. Hypercapnia is associated with increased susceptibility to bacterial infections and suppression of inflammatory signaling. The NF-κB pathway has been implicated in these effects; however, the molecular mechanisms underpinning cellular sensitivity of the NF-κB pathway to CO2 are not fully elucidated. Here, we identify several novel CO2-dependent changes in the NF-κB pathway. NF-κB family members p100 and RelB translocate to the nucleus in response to CO2 A cohort of RelB protein-protein interactions (e.g. with Raf-1 and IκBα) are altered by CO2 exposure, although others are maintained (e.g. with p100). RelB is processed by CO2 in a manner dependent on a key C-terminal domain located in its transactivation domain. Loss of the RelB transactivation domain alters NF-κB-dependent transcriptional activity, and loss of p100 alters sensitivity of RelB to CO2 Thus, we provide molecular insight into the CO2 sensitivity of the NF-κB pathway and implicate altered RelB/p100-dependent signaling in the CO2-dependent regulation of inflammatory signaling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。