The ubiquitin-proteasome pathway has emerged as an important regulatory mechanism governing the activity of several transcription factors. While estrogen receptor alpha (ERalpha) is also subjected to rapid ubiquitin-proteasome degradation, the relationship between proteolysis and transcriptional regulation is incompletely understood. Based on studies primarily focusing on the C-terminal ligand-binding and AF-2 transactivation domains, an assembly of an active transcriptional complex has been proposed to signal ERalpha proteolysis that is in turn necessary for its transcriptional activity. Here, we investigated the role of other regions of ERalpha and identified S118 within the N-terminal AF-1 transactivation domain as an additional element for regulating estrogen-induced ubiquitination and degradation of ERalpha. Significantly, different S118 mutants revealed that degradation and transcriptional activity of ERalpha are mechanistically separable functions of ERalpha. We find that proteolysis of ERalpha correlates with the ability of ERalpha mutants to recruit specific ubiquitin ligases regardless of the recruitment of other transcription-related factors to endogenous model target genes. Thus, our findings indicate that the AF-1 domain performs a previously unrecognized and important role in controlling ligand-induced receptor degradation which permits the uncoupling of estrogen-regulated ERalpha proteolysis and transcription.
Differential regulation of estrogen-inducible proteolysis and transcription by the estrogen receptor alpha N terminus.
阅读:5
作者:Valley Christopher C, Métivier Raphaël, Solodin Natalia M, Fowler Amy M, Mashek Mara T, Hill Lindsay, Alarid Elaine T
| 期刊: | Molecular and Cellular Biology | 影响因子: | 2.700 |
| 时间: | 2005 | 起止号: | 2005 Jul;25(13):5417-28 |
| doi: | 10.1128/MCB.25.13.5417-5428.2005 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
