A Molecular Dynamics Simulation Study on Enhancement of Mechanical and Tribological Properties of Nitrile-Butadiene Rubber with Varied Contents of Acrylonitrile.

阅读:6
作者:Yuan Quan, Li Yunlong, Wang Shijie, He Enqiu, Yang Bin, Nie Rui
The molecular models of nitrile-butadiene rubber (NBR) with varied contents of acrylonitrile (ACN) were developed and investigated to provide an understanding of the enhancement mechanisms of ACN. The investigation was conducted using molecular dynamics (MD) simulations to calculate and predict the mechanical and tribological properties of NBR through the constant strain method and the shearing model. The MD simulation results showed that the mechanical properties of NBR showed an increasing trend until the content of ACN reached 40%. The mechanism to enhance the strength of the rubber by ACN was investigated and analyzed by assessing the binding energy, radius of gyration, mean square displacement, and free volume. The abrasion rate (AR) of NBR was calculated using Fe-NBR-Fe models during the friction processes. The wear results of atomistic simulations indicated that the NBR with 40% ACN content had the best tribological properties due to the synergy among appropriate polarity, rigidity, and chain length of the NBR molecules. In addition, the random forest regression model of predicted AR, based on the dataset of feature parameters extracted by the MD models, was developed to obtain the variable importance for identifying the highly correlated parameters of AR. The torsion-bend-bend energy was obtained and used to successfully predict the AR trend on the new NBR models with other acrylonitrile contents.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。