We tested the effects of charge-neutralizing mutations of the eight arginine residues in DIVS4 of the rat skeletal muscle sodium channel (rNa(V)1.4) on deactivation gating from the open and inactivated states. We hypothesized that neutralization of outer or central charges would accelerate the I-to-C transition as measured by recovery delay because these represent a portion of the immobilizable charge. R1Q abbreviated recovery delay as a consequence of reduced charge content. R4Q increased delay, whereas R5Q abbreviated delay, and charge-substitutions at these residues indicated that each effect was allosteric. We also hypothesized that neutralization of any residue in DIVS4 would slow the O-to-C transition with reduction in positive charge. Reduction in charge at R1, and to a lesser extent at R5, slowed open-state deactivation, while charge neutralizations at R2, R3, R4, R6, and R7 accelerated open-state deactivation. Our findings suggest that arginine residues in DIVS4 in rNa(V)1.4 have differing roles in channel closure from open and inactivated states. Furthermore, they suggest that deactivation in DIVS4 is regulated by charge interaction between the electrical field with the outermost residue, and by local allosteric interactions imparted by central charges.
Outer and central charged residues in DIVS4 of skeletal muscle sodium channels have differing roles in deactivation.
阅读:3
作者:Groome James, Fujimoto Esther, Walter Lisa, Ruben Peter
| 期刊: | Biophysical Journal | 影响因子: | 3.100 |
| 时间: | 2002 | 起止号: | 2002 Mar;82(3):1293-307 |
| doi: | 10.1016/S0006-3495(02)75485-4 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
