Design of ear-contactless stethoscope and improvement in the performance of deep learning based on CNN to classify the heart sound.

阅读:5
作者:Roy Tanmay Sinha, Roy Joyanta Kumar, Mandal Nirupama
Cardiac-related disorders are rapidly growing throughout the world. Accurate classification of cardiovascular diseases is an important research topic in healthcare. During COVID-19, auscultating heart sounds was challenging as health workers and doctors wear protective clothing, and direct contact with patients can spread the outbreak. Thus, contactless auscultation of heart sound is necessary. In this paper, a low-cost ear contactless stethoscope is designed where auscultation is done with the help of a bluetooth-enabled micro speaker instead of an earpiece. The PCG recordings are further compared with other standard electronic stethoscopes like Littman 3 M. This work is made to improve the performance of deep learning-based classifiers like recurrent neural networks (RNN) and convolutional neural networks (CNN) for different valvular heart problems using tuning of hyperparameters like learning rate of optimizers, dropout rate, and hidden layer. Hyper-parameter tuning is used to optimize the performances of various deep learning models and their learning curves for real-time analysis. The acoustic, time, and frequency domain features are used in this research. The investigation is made on the heart sounds of normal and diseased patients available from the standard data repository to train the software models. The proposed CNN-based inception network model achieved an accuracy of 99.65 ± 0.06% on the test dataset with a sensitivity of 98.8  ± 0.05% and specificity of 98.2 ± 0.19%. The proposed hybrid CNN-RNN architecture attained 91.17 ± 0.03% accuracy on test data after hyperparameter optimization, whereas the LSTM-based RNN model achieved 82.32 ± 0.11% accuracy. Finally, the evaluated results were compared with machine learning algorithms, and the improved CNN-based Inception Net model is the most effective among others.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。