Several research studies were focused to understand how grapevine cultivars respond to environment; nevertheless, the biological mechanisms tuning this phenomenon need to be further deepened. Particularly, the molecular processes underlying the interplay between clones of the same cultivar and environment were poorly investigated. To address this issue, we analyzed the transcriptome of berries from three "Nebbiolo" clones grown in different vineyards, during two ripening seasons. RNA-sequencing data were implemented with analyses of candidate genes, secondary metabolites, and agronomical parameters. This multidisciplinary approach helped to dissect the complexity of clone à environment interactions, by identifying the molecular responses controlled by genotype, vineyard, phenological phase, or a combination of these factors. Transcripts associated to sugar signalling, anthocyanin biosynthesis, and transport were differently modulated among clones, according to changes in berry agronomical features. Conversely, genes involved in defense response, such as stilbene synthase genes, were significantly affected by vineyard, consistently with stilbenoid accumulation. Thus, besides at the cultivar level, clone-specific molecular responses also contribute to shape the agronomic features of grapes in different environments. This reveals a further level of complexity in the regulation of genotype à environment interactions that has to be considered for orienting viticultural practices aimed at enhancing the quality of grape productions.
Distinct Metabolic Signals Underlie Clone by Environment Interplay in "Nebbiolo" Grapes Over Ripening.
阅读:2
作者:Pagliarani Chiara, Boccacci Paolo, Chitarra Walter, Cosentino Emanuela, Sandri Marco, Perrone Irene, Mori Alessia, Cuozzo Danila, Nerva Luca, Rossato Marzia, Zuccolotto Paola, Pezzotti Mario, Delledonne Massimo, Mannini Franco, Gribaudo Ivana, Gambino Giorgio
| 期刊: | Frontiers in Plant Science | 影响因子: | 4.800 |
| 时间: | 2019 | 起止号: | 2019 Dec 4; 10:1575 |
| doi: | 10.3389/fpls.2019.01575 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
