Improved total synthesis and biological evaluation of potent apratoxin S4 based anticancer agents with differential stability and further enhanced activity.

阅读:4
作者:Chen Qi-Yin, Liu Yanxia, Cai Weijing, Luesch Hendrik
Apratoxins are cytotoxic natural products originally isolated from marine cyanobacteria that act by preventing cotranslational translocation early in the secretory pathway to downregulate receptor levels and inhibit growth factor secretion, leading to potent antiproliferative activity. Through rational design and total synthesis of an apratoxin A/E hybrid, apratoxin S4 (1a), we have previously improved the antitumor activity and tolerability in vivo. Compound 1a and newly designed analogues apratoxins S7-S9 (1b-d), with various degrees of methylation at C34 (1b,c) or epimeric configuration at C30 (1d), were efficiently synthesized utilizing improved procedures. Optimizations have been applied to the synthesis of key intermediate aldehyde 7 and further include the application of Leighton's silanes and modifications of Kelly's methods to induce thiazoline ring formation in other crucial steps of the apratoxin synthesis. Apratoxin S9 (1d) exhibited increased activity with subnanomolar potency. Apratoxin S8 (1c) lacks the propensity to be deactivated by dehydration and showed efficacy in a human HCT116 xenograft mouse model.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。