TDP-43 is linked to human diseases such as amyotrophic lateral sclerosis (ALS) and frontotemporal degeneration (FTD). Expression of TDP-43 in yeast is known to be toxic, cause cells to elongate, form liquid-like aggregates, and inhibit autophagy and TOROID formation. Here, we used the apt1â aah1â yeast model of inborn errors of metabolism, previously shown to lead to intracellular adenine accumulation and adenine amyloid-like fiber formation, to explore interactions with TDP-43. Results show that the double deletion shifts the TDP-43 aggregates from liquid-like droplets toward a more amyloid-like state. At the same time the deletions reduce TDP-43's effects on toxicity, cell morphology, autophagy, and TOROID formation without affecting the level of TDP-43. This suggests that the liquid-like droplets rather than amyloid-like TDP-43 aggregates are responsible for the deleterious effects in yeast. How the apt1â aah1â deletions alter TDP-43 aggregate formation is not clear. Possibly, it results from adenine and TDP-43 fiber interactions as seen for other heterologous fibers. This work offers new insights into the potential interactions between metabolite-based amyloids and pathological protein aggregates, with broad implications for understanding protein misfolding diseases.
An adenine model of inborn metabolism errors alters TDP-43 aggregation and reduces its toxicity in yeast revealing insights into protein misfolding diseases.
阅读:4
作者:Park Sangeun, Park Sei-Kyoung, Blair Peter, Liebman Susan W
| 期刊: | Microbial Cell | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 May 22; 12:119-130 |
| doi: | 10.15698/mic2025.05.850 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
