Development of an Infant Air-Jet Dry Powder Aerosol Delivery System (iDP-ADS) Including a New Multifunctional Bifurcating Two-Prong Nasal Interface.

阅读:4
作者:Strickler Sarah C, Farkas Dale R, Momin Mohammad A M, Vargas Laura, Aladwani Ghali, Hindle Michael, Longest Worth
PURPOSE: To improve the quality of aerosol delivery to infants, the iDP-ADS was advanced to include dual-prong nose-to-lung aerosol administration with a bifurcating interface, consistently monitor lung pressures and control ventilatory parameters with a pressure monitoring and control (PMC) unit, and implement flexible nasal prongs for use across a range of subject sizes. METHODS: Four bifurcating flow pathways were integrated into the iDP-ADS and tested in vitro with a full-term infant nose-throat (NT) model for comparison to the performance of a single-prong interface. After selecting the best-performing flow pathway, flexible prong designs were evaluated in the same model and chosen for additional testing. Realistic pulmonary mechanics (PM) and age-appropriate tidal volumes were used to simulate ventilation with the PMC unit and aerosol delivery in full-term and 34-week gestational age preterm NT models. RESULTS: Three of the four bifurcating flow pathways matched the performance of the single-prong design (tracheal filter delivery of ~55%), and the FP4 design with co-flow was selected. A flexible prong version of FP4 produced similar performance to the rigid version. Measurements from the PMC unit demonstrated that consistent air volumes under safe operating pressures could be delivered with a PEEP between 4-6 cmH(2)O. Considering aerosol delivery, PM conditions resulted in ~4% decrease in filter deposition but high lung delivery efficiencies of ~45% and ~34% for the full-term and preterm models, respectively. CONCLUSIONS: The best-performing interface with flexible prongs matched the lung delivery efficiency of a high-transmission single-prong interface and delivered high aerosol doses through late-preterm to full-term NT models.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。