Urine is a popular biofluid for metabolomics studies due to its simple, non-invasive collection and its availability in large quantities, permitting frequent sampling, replicate analyses, and sample banking. The biggest disadvantage with using urine is that it exhibits significant variability in concentration and composition within an individual over relatively short periods of time (arising from various external factors and internal processes regulating the body's water and solute content). In treating the data from urinary metabolomics studies, one must account for the natural variability of urine concentrations to avoid erroneous data interpretation. Amongst various proposed approaches to account for broadly varying urine sample concentrations, normalization to creatinine has been widely accepted and is most commonly used. MS total useful signal (MSTUS) is another normalization method that has been recently reported for mass spectrometry (MS)-based metabolomics studies. Herein, we explored total useful peak area (TUPA), a modification of MSTUS that is applicable to GCÃGC-TOFMS (and data from other separations platforms), for sample normalization in urinary metabolomics studies. Performance of TUPA was compared to the two most common normalization approaches, creatinine adjustment and Total Peak Area (TPA) normalization. Each normalized dataset was evaluated using Principal Component Analysis (PCA). The results showed that TUPA outperformed alternative normalization methods to overcome urine concentration variability. Results also conclusively demonstrate the risks in normalizing data to creatinine.
Towards Standardization of Data Normalization Strategies to Improve Urinary Metabolomics Studies by GCÃGC-TOFMS.
阅读:3
作者:Nam Seo Lin, Mata A Paulina de la, Dias Ryan P, Harynuk James J
| 期刊: | Metabolites | 影响因子: | 3.700 |
| 时间: | 2020 | 起止号: | 2020 Sep 19; 10(9):376 |
| doi: | 10.3390/metabo10090376 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
