Vitamin B1 (B1 herein) is a vital enzyme cofactor required by virtually all cells, including bacterioplankton, which strongly influence aquatic biogeochemistry and productivity and modulate climate on Earth. Intriguingly, bacterioplankton can be de novo B1 synthesizers or B1 auxotrophs, which cannot synthesize B1 de novo and require exogenous B1 or B1 precursors to survive. Recent isolate-based work suggests select abundant bacterioplankton are B1 auxotrophs, but direct evidence of B1 auxotrophy among natural communities is scant. In addition, it is entirely unknown if bulk bacterioplankton growth is ever B1-limited. We show by surveying for B1-related genes in estuarine, marine, and freshwater metagenomes and metagenome-assembled genomes (MAGs) that most naturally occurring bacterioplankton are B1 auxotrophs. Pyrimidine B1-auxotrophic bacterioplankton numerically dominated metagenomes, but multiple other B1-auxotrophic types and distinct uptake and B1-salvaging strategies were also identified, including dual (pyrimidine and thiazole) and intact B1 auxotrophs that have received little prior consideration. Time-series metagenomes from the Baltic Sea revealed pronounced shifts in the prevalence of multiple B1-auxotrophic types and in the B1-uptake and B1-salvaging strategies over time. Complementarily, we documented B1/precursor limitation of bacterioplankton production in three of five nutrient-amendment experiments at the same time-series station, specifically when intact B1 concentrations were â¤3.7 pM, based on bioassays with a genetically engineered Vibrio anguillarum B1-auxotrophic strain. Collectively, the data presented highlight the prevalent reliance of bacterioplankton on exogenous B1/precursors and on the bioavailability of the micronutrients as an overlooked factor that could influence bacterioplankton growth and succession and thereby the cycling of nutrients and energy in aquatic systems.
Prevalent reliance of bacterioplankton on exogenous vitamin B1 and precursor availability.
阅读:3
作者:Paerl Ryan W, Sundh John, Tan Demeng, Svenningsen Sine L, Hylander Samuel, Pinhassi Jarone, Andersson Anders F, Riemann Lasse
| 期刊: | Proceedings of the National Academy of Sciences of the United States of America | 影响因子: | 9.100 |
| 时间: | 2018 | 起止号: | 2018 Oct 30; 115(44):E10447-E10456 |
| doi: | 10.1073/pnas.1806425115 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
