Development of Nanoemulsions for Wound Dressings Containing Cassia alata L. Leaf Extraction.

阅读:3
作者:Sangkaew Surat, Wanmasae Smith, Bunluepeuch Kingkan, Ongtanasup Tassanee, Srisang Siriwan, Manaspon Chawan, Pooprommin Philaslak, Eawsakul Komgrit
Natural polymer-based hydrogel films possess considerable potential for use in biomedical applications and are excellent for wound healing. The purpose of this research was to use ionic crosslinking to improve the mechanical characteristics, absorption of fluid in the wound, and drug release behavior of Cassia alata L. (CA) extract loaded niosomes (CANs) that were incorporated in an alginate-pectin film (A/P). Then, chemically crosslinked A/P hydrogels were obtained by immersing them in different concentrations of calcium chloride (CaCl(2)) (0.5-1% w/v) for 15-120 s. The degree of crosslinking was controlled by both contact time and CaCl(2) concentration. The optimal crosslinking conditions were 1% CaCl(2) for 15 seconds. In this study, the following features of the hydrogel films were investigated: physical properties, morphological characteristics, drug loading, in vitro drug release, antibacterial activity, wound healing activity, cytocompatibility profiles, and hemocompatibility. The crosslinked hydrogel films maintained their physical integrity during use, with the 1% film attaining the best results in the shortest period (15 sec). Then, in vitro drug release from the films was examined. Crosslinking was observed to prolong the release of the CA extract from the hydrogel film. Finally, a cell viability experiment was conducted to evaluate the cytotoxicity profile. The A/P composite film exhibited excellent wound dressing qualities and good mechanical properties in preformulation testing. The in vitro drug release profile indicated that the A/P created a regulated drug release profile, and the cell viability experiment revealed that the film was nontoxic and hemocompatible. A/P composite films can be produced using CAN extract as a possible wound dressing. However, further studies in animals and humans are required to determine both safety and effectiveness.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。