Novel biocompatible core/shell Fe(3)O(4)@NFC@Co(ii) as a new catalyst in a multicomponent reaction: an efficient and sustainable methodology and novel reusable material for one-pot synthesis of 4H-pyran and pyranopyrazole in aqueous media.

阅读:4
作者:Kargar Pouya Ghamari, Bagherzade Ghodsieh, Eshghi Hossein
Today, due to the developing need for inexpensive catalysts, recyclable magnetic nanocatalysts immobilized on polysaccharides possess many advantages over classical heterogeneous catalysts. However, cellulose has been an appealing material in catalysis science and technology. In this work, by controlling the interaction between the inorganic complexes and the support material, we designed a high activity nanostructured combination of a magnetic nanoparticle Fe(3)O(4)@NFC@Co(ii) terminated complex as a multi-nuclear catalyst. This protocol involves an environment friendly approach using cobalt acetate. The magnetic nanostructure Fe(3)O(4)@NFC@Co(ii) can be used as a novel, green, and a powerful catalyst that demonstrates a short reaction time, high yield and easy procedure for the cascade Knoevenagel-Michael-cyclocondensation reaction for the one-pot synthesis of 4H-pyrans and pyranopyrazoles. The superparamagnetic nanocomposite could be conveniently separated by using an external magnet. Moreover, the catalyst could be reused at least five times in new reaction runs without a noticeable loss of activity. The prepared catalyst was characterized by FT-IR, XRD, VSM, FESEM, EDAX, TEM, ICP, and TGA techniques. The experiments were achieved with good yields and implied that the catalytic method was effective and convenient for heterocyclic synthesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。