Preparation of Sol-Gel Derived Anticorrosive Coating on Q235 Carbon Steel Substrate with Long-Term Corrosion Prevention Durability.

阅读:5
作者:Li Yue, Wu Chunchun, Xue Ming, Cai Jiawen, Huang Yi, Yang Hui
Anticorrosive coatings prepared by sol-gel derived approaches have become an emergent research area in the field of corrosion prevention materials. Furthermore, enhanced coating thickness can greatly improve the barrier effect of the sol-gel coatings, thus influencing their service life in industrial applications. Here, we propose the preparation of a two-layer coating system using a low-cost sol-gel derived method. The coating structure was composed of first an underlying layer incorporated with silica and titania powder as filler and pigment materials, and a second translucent topcoat containing a colloidal silica sol-gel matrix crosslinked by methyltrimethoxysilane (MTMS). This coating system was applied on Q235 carbon steel substrate by a two-step spray deposition method, resulting in an enhanced coating thickness of around 35 μm. The physical and morphological properties of the coatings were characterized using multiple techniques, including scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and atomic force microscopy (AFM). The anticorrosion performance of the sol-gel coatings was studied by a salt spray test, outdoor exposure test and electrochemical impedance spectroscopy (EIS). Results revealed that this two-layer coating system exhibited excellent physical and anticorrosion properties, and that the topcoat played a crucial role in maintaining the barrier effect and preventing water leakage.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。