Rapid Colorimetric Detection of Sulfite in Red Wine Using Alginate-Copper Laccase Nanozyme with Smartphone as an Optical Readout.

阅读:10
作者:Gutema Kaayyoof Fikadu, Mekonnen Menbere Leul, Yilma Bitania Teklu, Asrat Tesfaye Eshete, Dellith Jan, Diegel Marco, Csáki Andrea, Fritzsche Wolfgang
Compared with the conventional analytical methods, nanozyme-based colorimetric sensors offer simpler and more accessible solutions for point-of-need food safety monitoring. Herein, Alginate-Cu (AlgCu) is reported as a robust laccase mimetic nanozyme for the colorimetric detection of sulfite in red wine, a common preservative in winemaking. AlgCu represents a rational design of nanozymes where the multifunctional group alginate is used as a coordination environment for the Cu catalytic center, mimicking the amino acids microenvironment in the natural laccase. The laccase activity of the AlgCu is evaluated using 2,4-dichlorophenol as a model substrate, where its oxidized product reacts with 4-aminoantipyrine, forming a reddish-pink compound with an absorption peak at 510 nm. The result showed that the AlgCu exhibited 32.81% higher laccase activity than pristine copper NPs, highlighting the role of a coordination environment in improving catalytic activity. The addition of sulfite decreased the intensity of the catalytic chromogenic product, confirming that sulfite inhibited the laccase mimetic activity of AlgCu. The observed inhibition is linearly related to the sulfite concentration from 2 to 100 μM (R (2) = 0.996), enabling the detection of sulfite down to 0.78 μM. Furthermore, a sulfite concentration down to 4.9 μM could be detected by integrating the colorimetric assay with smartphone color readouts. Analysis of sulfite-spiked red wine samples gave recoveries between 96 and 106%. Overall, the obtained analytical figures of merits signify AlgCu as a robust nanozyme-based colorimetric chemosensor suitable for a point-of-need application in wine quality control and food safety monitoring in general.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。