We present the results of the most complete scan of the parameter space for cosmic ray (CR) injection and propagation. We perform a Bayesian search of the main GALPROP parameters, using the MultiNest nested sampling algorithm, augmented by the BAMBI neural network machine-learning package. This is the first study to separate out low-mass isotopes (p, p¯ , and He) from the usual light elements (Be, B, C, N, and O). We find that the propagation parameters that best-fit p, p¯ , and He data are significantly different from those that fit light elements, including the B/C and (10)Be/(9)Be secondary-to-primary ratios normally used to calibrate propagation parameters. This suggests that each set of species is probing a very different interstellar medium, and that the standard approach of calibrating propagation parameters using B/C can lead to incorrect results. We present posterior distributions and best-fit parameters for propagation of both sets of nuclei, as well as for the injection abundances of elements from H to Si. The input GALDEF files with these new parameters will be included in an upcoming public GALPROP update.
BAYESIAN ANALYSIS OF COSMIC RAY PROPAGATION: EVIDENCE AGAINST HOMOGENEOUS DIFFUSION.
阅读:3
作者:Jóhannesson G, de Austri R Ruiz, Vincent A C, Moskalenko I V, Orlando E, Porter T A, Strong A W, Trotta R, Feroz F, Graff P, Hobson M P
| 期刊: | Astrophys J | 影响因子: | 0.000 |
| 时间: | 2016 | 起止号: | 2016 Jun 10; 824(1):16 |
| doi: | 10.3847/0004-637x/824/1/16 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
